EXTC (CBSGS) App. Mathematics - III (CBSGS) App. Mathematics - III (May. 2017)

O.P. Code: 13608

(3 Hours) [Total marks: 80

- 1) Question number 1 is compulsory.
  - 2) Attempt any three questions from the remaining five questions.
  - 3) Figures to the right indicate full marks.
- Show that  $u = y^3 3x^2y$  is a harmonic function. Also find its harmonic conjugate. (5)
  - B) Find half range Fourier sine series for  $f(x) = x^3$ ,  $-\pi < x < \pi$ . (5)
  - $\square \text{ If } \overline{F} = xye^{2z}i + xy^2coszj + x^2cosxyk \text{ find } \text{div } \overline{F} \text{ and } \text{curl } \overline{F}$  (5)
  - D) Evaluate  $\int_0^\infty e^{-2t} \sin^3 t \ dt$ . (5)
- Q2) A) Prove that  $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$  (6)
  - B) Find an analytic function f(z) whose imaginary part is  $e^{-x}(y\sin y + x\cos y)$  (6)
  - C) Obtain Fourier series for  $f(x) = 1 + \frac{2x}{\pi}$   $-\pi \le x \le 0$   $= 1 \frac{2x}{\pi} \quad 0 \le x \le \pi$

Hence deduce that  $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$  (8)

- A) Show that  $\bar{F} = (2xyz^2)i + (x^2z^2 + zcosyz)j + (2x^2yz + ycosyz)k$ , is a conservative field. Find its scalar potential  $\varphi$  such that  $\bar{F} = \nabla \varphi$  and hence, find the work done by  $\bar{F}$  in displacing a particle from A(0,0,1) to B(1, $\pi$ /4,2) along straight line AB
  - Show that the set of functions  $f_1(x) = 1$ ,  $f_2(x) = x$  are orthogonal over

    (-1, 1). Determine the constants a and b such that the function  $f_3(x) = -1 + ax + bx^2$ is orthogonal to both  $f_1$  and  $f_2$  on that interval

    (6)

C) Find (i) 
$$L^{-1}\left\{log\left[\frac{s^2+a^2}{\sqrt{s+b}}\right]\right\}$$

(ii) L{
$$(e^{-t}cost.H(t-\pi)$$
}

Q.4) A) Prove that 
$$\int J_5(x) dx = -J_4(x) - \frac{4}{x}J_3(x) - \frac{8}{x^2}J_2(x)$$
 (6)

- B) Find inverse Laplace of  $\frac{s}{(s^2-a^2)^2}$  using Convolution theorem. (6)
- C) Expand  $f(x) = \frac{3x^2 6x\pi + 2\pi^2}{12}$  in the interval  $0 \le x \le 2\pi$  as a Fourier series.

Hence, deduce that 
$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 (8)

- Q5) A) Using Gauss Divergence theorem, prove that  $\iint_S (y^2 z^2 i + z^2 x^2 j + z^2 y^2 k) \cdot \overline{N} ds = \frac{\pi}{12}$ where S is the part of the sphere  $x^2 + y^2 + z^2 = 1$  and above the xy-plane. (6)
  - B) Prove that  $J_3(x) + 3J_0(x) + 4J_0'''(x) = 0$  (6)
  - C) Solve  $(D^3-2D^2+5D)y = 0$ , with y(0)=0, y'(0)=0 and y''(0)=1, (8)
- (6) A) Evaluate by Green's theorem for  $\int_C \left(\frac{1}{y} dx + \frac{1}{x} dy\right)$  where C is the the boundary of the region define by x = 1, x = 4, y = 1 and  $y = \sqrt{x}$ 
  - B) Find the bilinear transformation which maps the points z = 1, i, -1 onto points w = i, 0-i (6)
  - Find Fourier cosine integral representation for  $f(x) = e^{-ax}$ , x > 0Hence, show that  $\int_0^\infty \frac{\cos \omega s}{1+\omega^2} d\omega = \frac{\pi}{2} e^{-x}$ ,  $x \ge 0$  (8)

## --X--X--X--

## SE/EXTC/Sem-III (CBSGS)/Analog Electronics. I/MAY-2017

Q.P. Code: 545202

(3 Hours)

Total Marks: 80

- 1. Question No.1 is compulsory.
- 2. Answer any three from remaining questions.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if required.

## Q1. Attempt any four.

- a Explain the effect of temperature of on VI characteristics of a PN junction diode. 05
- b What are the important parameters of a JFET? How these parameters are determined graphically?
- c What is Early effect? Explain how it affects the BJT characteristics in CB configuration.
- d For the circuit shown in figure.1 draw the output waveform. Assume diode is ideal.



Fig.1

e For the FET shown in figure.2 the drain current equation is

$$I_{DQ} = 9\left(1 + \frac{v_{GSQ}}{3}\right)^2$$
 mA, Determine  $I_{DQ}$ ,  $V_{GSQ}$ ,  $V_{DSQ}$ ,  $V_D$ 

.  $V_{DD}$ =20V,  $R_D$ =2k $\Omega$ ,  $R_S$ =1.5K $\Omega$ , - $V_{SS}$ =-10V.



Fip 7

- Q2. a Describe the construction and operation of an N-channel MOSFET in enhancement mode. Draw its characteristics and equivalent circuit of the device.
  - Describe the different MOSFET biasing techniques . Determine the drain current, drain to source voltage, and Power dissipated in the transistor of CS circuit with an N-channel E MOSFET shown in figure 3.  $R_1=30k\Omega$ ,  $R_2=20k\Omega$ ,  $R_D=20k\Omega$ ,  $R_S=0.5k\Omega$ ,  $V_{DD}=5$ V,  $V_{TN}=1$ V,  $V_{NN}=1$ V,  $V_{NN}=1$ V,  $V_{NN}=1$ V.



Fig.3

- Q3. a Draw input and output characteristics of CE amplifier. Explain graphical analysis to 10 determine parameters.(Zi, Zo, AV, and Ai)
  - b In the Common Emitter configuration with voltage divider bias  $I_E=1mA$  10  $V_{CE}=2V$ ,  $R_E=1k\Omega$  and  $\beta=49$ . Determine the values of  $R_C$ ,  $R_1$  and  $R_2$  such that the stability factor does not exceed 5. Assume  $V_{CC}=5V$  and  $V_{BE}=0.3V$ .
- Q4. a For the amplifier shown in figure.4 analyze and determine 10
  - i) Small-signal hybrid pi parameters of BJT
  - ii) Small-signal voltage gain
  - iii) Input and output impedance.

The circuit parameters are:  $R_1=56k\Omega$  ,  $R_2=12.2k\Omega$ ,  $R_E=0.4k\Omega$ ,  $R_C=2k\Omega$ ,  $R_L=10k\Omega$ ,  $V_{CC}=10V$  and BJT parameters are  $\beta=100, V_{BE}=0.7V$ 



Fig.4

- b Draw JFET CS amplifier with voltage divider bias and derive the expressions for the voltage gain, input impedance and output impedance.
- Q5 a For the amplifier shown in figure.5 derive the expression for voltage gain, input 10 and output impedance. The parameters of the MOSFET in the circuit shown in fig .5 are;  $R_G = 1M \Omega$ ,  $V_{DD} = 5V$ ,  $-V_{SS} = -5V$ ,  $V_{TN} = 0.8 V$ ,  $k_N = 0.85 \ mA/V^2$ 
  - (i) Determine the values of  $R_S$  and  $R_D$  such that  $I_{DQ}$ =0.1mA and maximum symmetrical 1V peak sinusoidal signal occurs at output.(ii) Find the small signal transistor parameters. (iv) Determine the small-signal voltage gain  $A_V$



- b Draw the circuit diagram of Wein Bridge Oscillator and derive the expression for the frequency of oscillation and minimum gain required for sustained oscillation
- Write a short note on following
  - a Twin-T Oscillator.

Q6

- b Varactor Diode (Construction and operation)
- D C load line concept in BIT. Why Q point should be at the middle of DC load line and fixed?
- d MOS capacitor

\*\*\*\*\*\*\*

Q.P. Code: 545402

|    |                      | (3 Hours)                                                                                                                                                                                           |                  |
|----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|    | N.                   | B.: (1) Question No. 1 is compulsory.  (2) Attempt any 3 questions from Q.2 to Q.6.  (3) Figures to the right in the bracket indicate full marks.  (4) Assume suitable data if necessary.           |                  |
| 1. | a)<br>b)<br>c)<br>d) | Compare Combinational circuits with Sequential circuits. Compare Synchronous counter with Asynchronous counter. Compare Moore machine with Mealy machine. Compare SRAM with DRAM.                   | 5<br>5<br>5<br>5 |
| 2. | a)<br>b)             | Implement the following Boolean equation using single 4:1 MUX and few logic gates: $F(A,B,C,D) = \sum m(0, 2, 5, 6, 7, 9, 12, 15)$ . State and prove the De Morgan's theorem.                       | 10<br>5<br>5     |
| 3. | c)<br>a)             | Implement $Y = A + \overline{B}C$ using only NOR gates.  Draw a neat circuit of BCD adder using IC 7483 and explain.                                                                                | 10<br>10         |
|    | b)                   | Using Quine McClusky method, minimize the following: $F(P,Q,R,S) = \sum_{i=1}^{n} m(0,1,2,3,5,7,8,9,11,14)$ .                                                                                       |                  |
| 4. | a)                   | Design synchronous counter using D type flip flops for getting the following sequence: $0 \rightarrow 3 \rightarrow 1 \rightarrow 5 \rightarrow 6 \rightarrow 0$ .  Take care of lockout condition. | 10               |
|    | b)<br>c)             |                                                                                                                                                                                                     | 5                |
| 5  | a)                   | Write the VHDL code for 3-bit up-down counter with negative edge triggered clock and active low Preset and Clear terminals.                                                                         | 10               |
|    | b)<br>c)             | Compare TTL with CMOS logic families.  Draw the internal logic diagram of Programmable Logic Array (PLA).                                                                                           | 5                |
| 6. | a)                   | What is shift register? Explain any one type of shift register. Give its application.                                                                                                               | 10               |
|    | b)                   | Design a Mealy type sequence detector circuit to detect a sequence 1011                                                                                                                             | 10               |

QP Code: 545601

(3 Hours) [ Total Marks: 80

N. B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from the remaining five.
- (3) Assume suitable data with justification if missing.
- 1. (a) Determne the z-parameters for the network shown in the following figure



(b) Find current I1 in the network shown in fig.



(c) Determine the driving point impedance function of the one-port network shown



TURN OVER

QP Code: 545601

- (d) Test whether  $(P(s) = s^5 + 12s^4 + 45s^3 + 60s^2 + 44s + 48$  is Hurwitz. 5
- 2. (a) Find  $V_1$  in the network shown in fig. using superposition theorem.

10



(b) Find the voltage at node 2 in the network shown in fig.

5



(c) State and prove initial value theorem.

5

(a) Synthesize the following function in cauer I and cauer II form.

10

- $Z(s) = \frac{(s+1)(s+4)}{s(s+2)}$
- (b) Check if the following function is a positive real function.

5

$$F(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}$$

(c) The parameters of a transmission line are  $R = 6\Omega/km$ , L = 2.2 mH/5 km,  $G = 0.25 \times 10^{-6} \Omega/\text{km}$ ,  $C = 0.005 \times 10^{-6} \text{ F/km}$ . Determine the characteristic impedance and propagation contant at a frequency of 1 GHz.

QP Code: 545601

4. (a) Find the Y and Z parameters of the network shown in fig. 10

3



- (b) In the two port n/w shown in fig. compute h-perameters from the following data
  - (i) with the o/p port short circuited,

$$V_1 = 25V, I_1 = 1A, I_2 = 2A$$

(ii) with the i/p port open circuited,

$$V_1 = 10V, V_2 = 50V, I_2 = 2A$$



(c) For the circuit given below, determine  $\frac{V_c}{V}$  and draw the pole-zero plot. 5



QP Code: 545601

5. (a) In the network shown in fig. switch is changed from position 1 to position 2 at t = 0, steady state condition having reached before

switching. Find the values of i,  $\frac{di}{dt}$  and  $\frac{d^2i}{dt^2}$  at  $t = 0^+$ .



(b) Find the voltage across the  $5\Omega$  resistor in the network shown in figure.



- (c) Explain the RF bahaviour of transmission line for various conditions.
- 6. (a) Find the current i(t) for t > 0



TURN OVER

QP Code: 545601

(b) Synthesize the following using the Foster I realization.

5

$$F(s) = \frac{(s+1)(s+5)(s+3)}{s(s+2)(s+6)(s+4)}$$

(c) Draw the following normalized quantities on a Smith Chart.

- (i)  $(3 + j3)\Omega$ 
  - (ii)  $(1-j2)\Omega$
- (iii) (2)Ω
  - (iv)  $(j1)\Omega$

Q.P. Code: 545502

|               | (3 Hours) [ Total Marks : 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (2            | <ol> <li>Attempt four questions, question no 1 is compulsory.</li> <li>Assume suitable data where ever required.</li> <li>Answers to the questions should be grouped together.</li> <li>Figure to the right of question indicates full marks.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| (a)<br>(b)    | General specifications of Digital Multi-meter.  List name of bridges for RLC measurement with proper classification.  List name of three and half digit display.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0        |
| 2. (a)<br>(b) | established the state of the st | 10<br>10 |
| 3. (b)        | Draw and explain Weighted resistor network type DAC for 3 bits input taking suitable example.  The bridge and its application in very low resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>10 |
| 4. (a)        | Explain dual slop integration type ADC with the help of block diagram and comment on its speed.  Explain LVDT and define its application in displacement measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>10 |
|               | Explain Hetrodyne type waves analyser and its applications.  Discuss DSO with the help of block diagram along with various modes of operation also explain its applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>10 |
| 6. (a)        | Draw and discuss Maxwell Bridge and its application for measurement of inductance.  Define Q factor and explain working of a Q meter for Q factor measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>10 |